Chat with us on Whatsapp

DataScience Training in Bangalore

  • Home
  • DataScience Foundation Training in Bangalore

DataScience Training in Bangalore

Course Name : DataScience Foundation

Duration (in Hours) 32 Target Audience Any IT professionals
Proficiency Level Associate Level Pre-requisites Basics of Virtualization

Course Contents

  • Module 1 : Foundation for Data Science
    • Introduction to Data Science
    • Analytics Landscape
    • Life Cycle of a Data Science Projects
    • Data Science Tools & Technologies
  • Module 2 : Probability & Statistics
    • Measures of Central Tendency
    • Measures of Dispersion
    • Descriptive Statistics
    • Probability Basics
    • Marginal Probability
    • Bayes Theorem
    • Probability Distributions
    • Hypothesis Testing
  • Module 3: Basics of Python
    • Install Anaconda
    • Data Types & Variables
    • String & Regular Expressions
  • Module 4: : Python Built-in Data Structures
    • Python list
    • Python dictionaries
    • Python set
    • Python tuple
    • Comprehensions
  • Module 5: Control & Loop Statements in Python
    • For Loop & While Loop
    • Break Statement & Next Statements
    • Repeat Statement
    • if, if…else Statements
    • Switch Statement
  • Module 6: Functions & Classes in Python
    • Writing your own functions (UDF)
    • Calling Python Functions
    • Functions with Arguments
    • Calling Python Functions by passing Arguments
    • Lambda Functions
    • Classes & Objects
  • Module 7: Analyze Data using Pandas
    • Clean & Prepare Datasets
    • Manipulate DataFrame
    • Summarize Data
    • Churn Insights from Data
  • Module 8: Introduction to Machine Learning
    • What is Machine Learning
    • Machine Learning Process
    • Types of Machine Learning
  • Module 9: Visualize Data
    • Charts using Matplotlib
    • Charts using Seaborn
    • Charts using ggplot
  • Module 10: Advanced Statistics & Predictive Modeling
    • ANOVA
    • Linear Regression (OLS)
    • Case Study: Linear Regression
    • Principal Component Analysis
    • Factor Analysis
    • Case Study: PCA/FA
    • Logistic Regression (MLE)
    • Case Study: Logistic Regression
    • K-Nearest Neighbor Algorithm
    • Case Study: K-Nearest Neighbor Algorithm
    • Decision Tree
    • Case Study: Decision Tree
  • Module 11: Time Series Forecasting
    • Understand Time Series Data
    • Visualizing TIme Series Components
    • Exponential Smoothing
    • Holt's Model
    • Holt-Winter's Model
    • ARIMA
    • Case Study: Time Series Modeling on Stock Price
  • Module 12: Introduction to Machine Learning
    • What is Machine Learning?
    • Supervised Learning & Unsupervised Learning
    • Using Scikit-learn
    • Scikit-learn classes
    • Case Study: Machine Learning Algorithm


Subscribe to our all newsletter.